동물그림창고(Animal Pictures Archive)
동물사진 포토앨범

새로운 사진 신문속의 동물소식 신기한 동물이야기 동물의 소리 동물동화상 사진 올리기 사진 저작권 English
재미있는 동물사진 괴수/괴어/엽기 동물사진 동물이름사전 동물목록 바깥고리 창고입구 똑똑누리집
Delete Modify    
Seed Shrimp (Class: Ostracod) - Wiki latin dict size=16   common dict size=512
이미지 정보 Original File Name: Seed Shrimp, Cypridina mediterranea.jpg Resolution: 769x1204 File Size: 329109 Bytes Date: 2007:09:05 16:07:57 Upload Time: 2007:09:05 16:11:09
올린이 이름 (메일주소): Unknown
사진 제목 Seed Shrimp (Class: Ostracod) - Wiki

Seed Shrimp (Class: Ostracod) - Wiki; Image ONLY
Email : 카드 | 올린이 | 운영자    사진삭제   정보수정   Admin

설명
Seed Shrimp (Class: Ostracod) - Wiki

Ostracod
From Wikipedia, the free encyclopedia

[Photo] Anatomy of Seed Shrimp, Cypridina mediterranea. Source:" A Treatise of zoology". Date 1909. Author E Ray Lankester

Ostracoda is a class of the Crustacea, sometimes known as the seed shrimp because of their appearance. Some 50,000 extinct and extant species have been identified, grouped into several orders.

Ostracods are small crustaceans, typically around one mm in size, but varying between 0.2 to 30 mm, laterally compressed and protected by a bivalve-like, chitinous or calcareous valve or "shell". The hinge of the two valves is in the upper, dorsal region of the body.

Ecologically ostracods can be part of the zooplankton, or (most commonly) they are part of the benthos, living on or inside the upper layer of the sea floor. Many ostracods are also found in fresh water and some are known from humid continental forest soils.

Fossils
Ostracods have a long and well-documented fossil record from the Cambrian to the present day. An outline microfaunal zonal scheme based on both foraminifera and ostracoda was compiled by M. B. Hart (1972).

Ostracods have been particularly useful for the biozonation of marine strata on a local or regional scale, and they are invaluable indicators of paleo-environments because of their widespread occurrence, small size, easily-preservable generally-moulted calcified bivalve carapaces, the valves are a commonly found microfossil.

Morphology
The body of an ostracod is encased by two valves, which together form the duplicature. A distinction is made between the valve (hard parts) and the body with its appendages (soft parts).

Soft parts and ontogeny
The body consists of a cephalon (head), separated from the thorax by a slight constriction. The segmentation is unclear. The abdomen is regressed or absent whereas the adult gonads are relatively large. There are 5-8 pairs of appendages. The branchial plates are responsible for oxygenation.

During the ontogeny the epidermis (containing mesodermal tissue) invaginates ventrolaterally near the cephalon/thorax area. This invagination proceeds upwards and tailwards, until the whole animal is enveloped by a double tissue layer on both sides: this forms the duplicature. The dorsal region never becomes invaginated, and is called the isthmus. The mesodermal tissue in the duplicature develops into the vestibulum. The vestibulum makes contact with the body near the isthmus. It plays a role in oxygenation. In paleo-ecology, the size of the vestibulum can be cautiously interpreted as an environmental indicator. The two double tissue layers surrounding the animal each have an inner and an outer lamella, which surrounds the vestibulum. These lamellae are surrounded by a chitinous cuticle, that is secreted by the epidermal cells.

Like all arthropods, ostracods develop discontinually. Before reaching maturity 8 larval stages (instars) are passed.

Hard parts
The epidermal cells may also secrete calcium carbonate after the chitinous layer is formed, resulting in a chalk layer enveloped by chitin. This calcification is not equally pronounced in all orders. During every instar transition, the old carapace (chitinous and calcified) is rejected and a new, larger is formed and calcified. The outer lamella calcifies completely, while the inner lamella calcifies partially, with the rest remaining chitinous. The partial inner lamella calcification occurs when the ostracod becomes adult. The partial inner lamella calcification is most strongly developed frontally (see electron micrograph). The marginal zone is the area where inner and outer lamella meet, and includes part of the vestibulum. The edge of the marginal zone is called the fused zone, and in this area inner and outer lamella join. The fused zone can contain marginal pore canals. These, along with non-marginal pore canals (that are dispersed evenly along the ostracod's valve) connect the vestibulum to the outer world. The line of concrescence is the visible line between the vestibulum and the fused zone. In many cases, this line is wavering and follows the marginal pore canals. On the inner lamella, a selvage may be present.

http://en.wikipedia.org/wiki/Ostracod
The text in this page is based on the copyrighted Wikipedia article shown in above URL. It is used under the GNU Free Documentation License. You may redistribute it, verbatim or modified, providing that you comply with the terms of the GFDL.

저작권 정보 사진의 저작권은 원저작자에게 있습니다. 동물그림창고는 동물관련 사진을 전시할 수 있는 공간만을 제공합니다.사진을 사용하고자 할 경우에는 저작권자와 협의하시기 바랍니다.

Search Major Animal Websites
동정이 잘못되었거나 남기고 싶은 말이 있으면 여기에 남겨주세요.
이름 :    암호 :
메일주소 :
 
사진 검색
뒤로가기 목록 사진등록 창고 홈 English
CopyLeft © since 1995, 동물그림창고. All rights may be reserved.
Powered by KRISTAL IRMS 정보검색관리시스템

Stats